
Wayland on Android

Project introduction and status on June 18th, 2012

Pekka Paalanen
ppaalanen@gmail.com



Introduction

Outline

Introduction

Porting to Android

Status of Wayland on Android

What is next



Introduction

What is Wayland?

Wayland is a new protocol for server–client communication in a
graphical windowing system, aiming to become a de-facto standard.

I core is extremely simple and small

I designed to be extendable and avoid round-trips

I does not contain any rendering interfaces

I has a well-defined concept of a complete frame

I core includes input, selection (cut & paste), and drag & drop

I does not expose any direct client-to-client communication,
except passing file descriptors for selection and d&d data



Introduction

The design of Wayland

I Start with the minimal set of protocol that modern graphical
apps need: user input and graphics output.

I Combine the server, compositor, and window manager into a
single process, to minimize IPC.

I Clients render everything themselves, including decorations, and
send complete frames.

I ”Every frame is perfect.”

I Window management by protocol extensions with policy.

I Transition from and co-existence with X is well planned.



Introduction

What is Android?

Android is an operating system aimed for embedded-like multimedia
devices (smartphones, tablets, laptops, in-vehicle infotainment,
televisions, . . . ).

I runs on lots of fun devices

I completely non-standard windowing system

I crippled ”standard” C library (Bionic)

I proprietary IPC: Binder (RPC)

I monolithic GNU Make based build system

I many proprietary closed source drivers from hardware vendors



Introduction

Why bring Wayland to Android?

Device manufacturers (especially ARM SoC vendors) concentrate on
enabling Android. Generic Linux systems may come later, but likely
never.
We want to leverage all that hardware enablement, to be able to
offer

I well-known, stable, and superior free open source software
technologies, and

I an alternative to an Android-only operating system: Android
hardware, freedesktop.org middleware, familiar FOSS user
applications.



Introduction

Project goals

A proof of concept Wayland stack running on an Android device.

I Weston running with hardware GL ES 2 on the framebuffer,
and working input.

I Working native Wayland clients, software rendered.

I Working native Wayland clients using hardware accelerated GL
rendering, and zero-copy buffer submission (i.e. Wayland EGL
platform).

The target is Android 4.0 (4.0.1 r1.2 for now) on a Samsung Galaxy
Nexus device.



Porting to Android

Outline

Introduction

Porting to Android

Status of Wayland on Android

What is next



Porting to Android

Building autoconf/automake projects

Android build environment requires lots of compiler and linker
options, that the Android build system (ABS) sets.
We introduce a special configure step, that must be ran before the
real build. There we

I run autoreconf

I run configure with all the ABS flags, pkg-config overrides,
runtime test overrides, etc.

I generate all $(BUILT SOURCES) and

I generate Android.mk files with Androgenizer in the automake
Makefiles.

All libraries should have also the uninstalled version of .pc files.



Porting to Android

Bionic missing features encountered

Implemented by fallbacks:

I SOCK CLOEXEC, F DUPFD CLOEXEC, MSG CMSG CLOEXEC

I epoll create1(), EPOLL CLOEXEC

I accept4(), strchrnul(), mkostemp()

Still missing, just hacked out:

I execinfo.h, backtrace()

I timerfd API, signalfd API

I eaccess(), euidaccess()

I locale.h, localeconv()



Porting to Android

Warning: Thread-Local Storage

Thread-specific data can only be used through pthread key t

objects. There are less than 60 slots available.

The keyword thread must not be used. The compiler will happily
compile it, but the runtime does not support it. Beware of false
positives in autoconf tests.



Status of Wayland on Android

Outline

Introduction

Porting to Android

Status of Wayland on Android

What is next



Status of Wayland on Android

Weston compositor

Weston is runnable and can handle clients.

I graphics output into framebuffer with presumably hardware
accelerated GL ES 2

I shared memory (i.e. software rendered) clients work

I hardware GL clients work (as in one ad hoc test app, no
standard API!)

I to do: input, timers, signal handling

External libraries needed by Weston: libwayland, libffi, pixman,
mtdev, libxkbcommon



Status of Wayland on Android

Weston demo clients

Ported and working clients:

I simple-shm

I weston-desktop-shell

I clickdot

I flower

Also simple-egl builds (the needed stubs are
added to the Android libEGL), but does not run.

Needed external libraries in addition to
Weston’s dependencies: cairo



Status of Wayland on Android

EGL Wayland support

Implementations in Android’s libEGL (open source wrapper library).
Wayland protocol extension: android wlegl

I used to implement EGL WL bind wayland display extension

I passing Android hardware graphics buffers is tested to work

I design similar to wl drm of Mesa

I the design may need to be reversed, if Android does not allow
clients to allocate buffers

Wayland EGL platform (the standard client side API) is not yet
implemented.



Status of Wayland on Android

Android libEGL and Wayland

Wayland server

Wayland client

Android backend

Wayland EGL
platform

Android libEGL

Wayland proto

android_wlegl

EGL_WL_bind_wayland_display

Android
software EGL

vendor
hardware EGL



What is next

Outline

Introduction

Porting to Android

Status of Wayland on Android

What is next



What is next

On my plate

Input support for the Weston Android backend:

I Split udev code from evdev code in Weston. (≈done)

I Reimplement the evdev device opening logic from Android.

The Wayland EGL platform—enables clients to use libwayland-client
and wayland-egl along with the standard EGL API for graphics.

Android backend graphics enhancements:

I Do we have vsync, and how does it work?

I Can we know when a buffer turns into light on the screen?

I taking advantage of hardware overlays



What is next

Questions?

Thank you!

http://www.collabora.com/services/android/

http://ppaalanen.blogspot.fi/

http://www.collabora.com/services/android/
http://ppaalanen.blogspot.fi/

	Introduction
	Porting to Android
	Status of Wayland on Android
	What is next

